



#### **Research Projects**

H2020 SME project: recoveriX - motor recovery after stroke

recoveriX

**H2020 SME project: ComaWare** – coma assessment and communication

mind BEAGLE

**H2020 Eurostars project: ComAlert** – coma prediction

H2020 Eurostars project: RapidsMaps – high gamma mapping

**EC** project: Neurographene – development of Graphene electrodes



EC project: ReNaChip - Rehabilitation of a discrete sensory motor learning function

**EC project: Sm4all** – Smart Home for all

EC project: RGS - Rehabilitation Gaming System faster recovery from stroke

EC project: BrainAble - BCI with VR and social networks

**EC project: Decoder -** BCI for locked in patients

EC project: CSI - Central Nervous System Imaging

**EC project: BETTER** BCI for Stroke rehabilitation and rehabilitation robots

**EC project: VERE** – Virtual Embodiment Real Embodiment

**EC project: ALIAS** – Adaptable Ambient Living Assistant

**EC project: BACKHOME** – BCIs for end users

**EC project: DENECOR** 

**EC project: High Profile** 

























# **Current g.tec BCI applications** g. tec GUGER TECHNOLOGIES **BCI**

# Changes of brain electrical activity and mental strategies

- Slow cortical potentials (anticipation tasks)
   DC-derivation, artifact problem, difficult strategy, feedback method
- Steady-State Evoked potentials (SSVEP, SSSEP)
   Flickering light with specific frequency
- Event-related, non-phase-locked changes of oscillatory activity ERD/ERS (motor imagery tasks)
   Changes of mu-rhythm, alpha activity and beta activity over sensorimotor areas; imagination of hand- ,foot-, tongue- movements
- Evoked potentials (focus on attention task)
   Thalamic gating, various methods of stimulation (visual, tactile, electrical, auditory, ...),
   P300
- Code based evoked potentials (focus on a code)





#### Problem 1: Different sensors



Non-invasive versus invasive (different regulations, FDA, CE)

Depth electrodes, grids versus EEG electrodes

Active or passive electrodes

Gel or dry EEG electrodes

Different number of channels (P300: 8, SSVEP: 8, motor imagery: 64, invasive mapping: 256)

Different sampling frequency (Spikes: 40 kHz, ECoG: 1-4 kHz,

EEG: 256 Hz)

Different platforms (Windows, Linux, Android,...)



#### How do interface with different amplifiers



- g.NEEDaccess service to interface all amplifiers with one common interface
- A. C++ Application Program Interface (API)
  - integrate amplifiers into own software under Windows and Linux

#### B. MATLAB API

- integrate amplifiers into MATLAB data acquisition and analysis programs
- access all toolboxes (Signal Processing, Neural Networks,...)
- access user written M-files
- C. Simulink Highspeed on-line Pro
  - amplifier device driver blc
  - copy the block into Simuli (S-functions) and paradig
  - just exchange the amplification processing blocks

#### D. LabView

- amplifier device driver blc
- use standard LabView block



All three options give full access to hardware

- bandpass, notch settings
- sampling frequency
- impedance check
- synchronization with digital inputs
- direct integration of other devices





#### **Problem 2: Event Timing**



Real-time data stream synced with external devices visual P300: 1 ms resolution vibro-tactile P300: 1 ms resolution

. . . .

Control of external devices
UDP
digital outputs

#### intendiX - face speller





#### **BCI** interface with video overlay









Supervisor

User

(8 EEG channels)

g.BClsys (signal processing)

**EthoVision** 

(tracking system)

o-Server / Video-Client / BCI-Overlay / LEDs

Track / e-puck

(visual stimulation and video feedback)

11 subjects participated

LED stimulation: 91,36 % Screen stimulation: 91,36 % Code based screen: 98.18 %.

Average time to complete the tasks 222.57 s (code based BCI),

437.43 s (frequency LED)

573.43 s (frequency screen).

Feedback camera

Tracking camera

Submitted to Frontiers, 2013

Robot control in VERE <u>video</u> www.gtec.at

#### **Embodiment Station**





Stimulators and Sensors





thumb

oing



Gerwin Schalk, Wadsworth Center

Stimulate the body and observe effects in the brain -

-> real-time functional mapping

Eye-tracking

Stimulate the brain and observe effects on the body

-> real-time sensing





<u>cortiQ - Clinical software for electrocorticographic real-time functional mapping of the eloquent cortex.</u>

Prueckl R, Kapeller C, Potes C, Korostenskaja M, Schalk G, Lee KH, Guger C.

Conf Proc IEEE Eng Med Biol Soc. 2013 Jul;2013:6365-8. doi: 10.1109/EMBC.2013.6611010.



# Problem 3: Many controllable elements



Smart home needs many controls for domotic devices

BCI has to understand which controls are necessary

BCI must be updated to changes of the environment

#### **Brain Painting Application**





#### **ACTOR** protocol

FC5

The BCI speaks with ACTOR protocol with the avatars and robotic systems



**XML files** are loaded **at startup** (from disk or from a text string, which is received over the network)

Updates of the XML files can be received at runtime over UDP: Modify the contents
 of the BCl at runtime, e.g. to achieve context awareness



Load XML over network
Update XML over network

C. Hintermüller, C. Kapeller, G. Edlinger, C. Guger (2013): "BCI Integration: Application Interfaces" Book Article in "Brain-Computer Interface Systems – Recent Progress and Future Prospects" R 44879, Intec, book chapter

#### The XML based BCI Standard



- Each interaction (e.g. the letter 'A') is related to an instruction string
- If 'A' is selected: the string is sent over UDP:
   A remote device or applications can be controlled with the BCI just by knowing an IP address and the instruction string



device or application (e.g.

Twitter)



#### **The Virtual Reality Apartment**











#### Problem 4: Avatar/robot control

The person is seeing the environment through the avatar or robotic system

We need BCI controls for controlling the avatar/robot

The BCI system has to send control command to external system

Interfacing with rehabilitation devices

## Screen overlay control interface - SOCI



Video: Overlay BCI



#### **World of Warcraft**







#### 4 controls:

Turn left, right, move forward, perform action like grasping objects, attacking other objects

60 Hz LCD display with 15, 12, 10 and 8.75 Hz.

BCI overlay based on OpenGL – can be used with any graphics application





#### **Humanoid Robots for Physical Embodiment**









BCI control to grasp a Coke

**EuroNews** 

**DigInfo** 

**Abderrahmane Kheddar, CNRS** 





### Problem 5: Highly immersive feedback

#### Stroke rehabilitation with BCI system



Motor imagery BCI controls FES and avatar
BCI accuracy is objective parameter for training
Motor recovery controlled with 9-hole PEG test







#### Problem 6: Performance standards



## **BCI** performance comparison



| npor                                                                | tant that some                 | Motor imagery |               | P300 speller<br>[Guger 2016]   |  |  |  |  |
|---------------------------------------------------------------------|--------------------------------|---------------|---------------|--------------------------------|--|--|--|--|
| nportant that some systems are not called [Guger 2016]  BCI systems |                                |               |               |                                |  |  |  |  |
|                                                                     | Grand average accuracy         | 87 %          | 98 %          | 100 %                          |  |  |  |  |
|                                                                     | Training time                  | 30 min        | 5 min         | 5 min                          |  |  |  |  |
|                                                                     | Number of electrodes           | 32            | 8             | 8                              |  |  |  |  |
|                                                                     | Random classification accuracy | 1/2           | 1/4           | 1/36                           |  |  |  |  |
|                                                                     | Decision time for selection    | 6 sec         | 3 sec         | About 45 sec with 15 flashes   |  |  |  |  |
|                                                                     | Location                       | Motor cortex  | Visual cortex | Central line and visual cortex |  |  |  |  |

#### Hand Movement Task

- Movement: Online classification accuracy (video)



**BCI-ECoG** setup

**Classification accuracy** 





#### Problem 7: Calibration



#### SSVEP group study accuracy



| Accuracy | Number of | d accuracy | Percentage                  |             |           |  |  |  |
|----------|-----------|------------|-----------------------------|-------------|-----------|--|--|--|
| (%)      | Run 1     | Run 2      | Run 3                       | Run 4       | of people |  |  |  |
|          |           |            |                             |             | after     |  |  |  |
|          |           |            |                             |             | training  |  |  |  |
| 100      | 22        | 25         | 27                          | 27          | 50.9      |  |  |  |
| 90-99    | 14        | 19         | BCIs need calibration phase |             |           |  |  |  |
| 80-89    | 7         | 4          |                             |             |           |  |  |  |
| 70-79    | 2         | 1          | o acilieve i                | ligii perio | Illiance  |  |  |  |
| 60-69    | 1         | 2          | 1                           | 1           | 1.9       |  |  |  |
| 50-59    | 4         | 1          | 0                           | 0           | 0.0       |  |  |  |
| 40-49    | 3         | 0          | 1                           | 0           | 0.0       |  |  |  |
| 0-39     | 0         | 1          | 0                           | 0           | 0.0       |  |  |  |
| Mean     |           |            |                             |             |           |  |  |  |
| Accuracy | 87.9      | 92.9       | 95.0                        | 95.5        |           |  |  |  |
|          |           | N=53 with  | N=53 with 7                 | N=53 with 2 |           |  |  |  |
|          | N=53      | 14 new     | new                         | new         |           |  |  |  |





Poor performance in SSVEP BCIs: Are worse subjects just slower?



frontier IN NEUROPROSTHETICS

**How many people could use an SSVEP BCI?**, Christoph Guger, Brendan Z Allison, Bernhard Grosswindhager, Robert Prückl, Christoph Hintermüller, Christoph, Kapeller, Markus Bruckner, Gunther Krausz and Guenter Edlinger, **www.gtec.at** Frontiers in Neuroprosthetics, 2012.



## Problem 8: Good looking BCI users



